12 research outputs found

    The 'Shackleton Site' (IODP Site U1385) on the Iberian Margin

    Get PDF
    Nick Shackleton’s research on piston cores from the Iberian margin highlighted the importance of this region for providing high-fidelity records of millennial-scale climate variability, and for correlating climate events from the marine environment to polar ice cores and European terrestrial sequences. During the Integrated Ocean Drilling Program (IODP) Expedition 339, we sought to extend the Iberian margin sediment record by drilling with the D/V JOIDES Resolution. Five holes were cored at Site U1385 using the advanced piston corer (APC) system to a maximum depth of ∌ 155.9 m below sea floor (m b.s.f.). Immediately after the expedition, cores from all holes were analyzed by core scanning X-ray fluorescence (XRF) at 1 cm spatial resolution. Ca/Ti data were used to accurately correlate from hole-to-hole and construct a composite spliced section, containing no gaps or disturbed intervals to 166.5 m composite depth (mcd). A low-resolution (20 cm sample spacing) oxygen isotope record confirms that Site U1385 contains a continuous record of hemipelagic sedimentation from the Holocene to 1.43 Ma (Marine Isotope Stage 46). The sediment profile at Site U1385 extends across the middle Pleistocene transition (MPT) with sedimentation rates averaging ∌ 10 cm kyr−1. Strongprecession cycles in colour and elemental XRF signals provide a powerful tool for developing an orbitally tuned reference timescale. Site U1385 is likely to become an important type section for marine–ice–terrestrial core correlations and the study of orbital- and millennial-scale climate variability

    Early and middle miocene antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross sea, Antarctica

    No full text
    In 2007, the Antarctic Geological Drilling Program (ANDRILL) drilled 1138.54 m of strata ̃10 km off the East Antarctic coast, includ ing an expanded early to middle Miocene succession not previously recovered from the Antarctic continental shelf. Here, we pre sent a facies model, distribution, and paleoclimatic interpretation for the AND-2A drill hole, which enable us, for the first time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply significantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments, including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was periodically larger than the modern ice sheet. (2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-influenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a glacially influenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1-19.6 Ma and ca. 19.3-18.7 Ma and during the Miocene climatic optimum, ca. 17.6-15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5-16.3 Ma and ca. 15.7-15.6 Ma. While glacial minima at ca. 20.1-19.6 Ma and ca. 19.3-18.7 Ma were characterized by temperate margins, an increased abundance of gravelly facies and diatomaceous siltstone and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6-15.4 Ma). Several periods of major ice growth with a grounding line traversing the drill site are recognized between ca. 20.2 and 17.6 Ma, and after ca. 15.4 Ma, with evidence of cold polar glaciers with ice shelves. The AND-2A core provides proximal evidence that during the middle Miocene climate transition, an ice sheet larger than the modern ice sheet was already present by ca. 14.7 Ma, ̃1 m.y. earlier than generally inferred from deep-sea oxygen isotope records. These findings highlight the importance of high-latitude ice-proximal records for the interpretation of far-field proxies across major climate transitions. © 2011 Geological Society of America
    corecore